The Benefit of Ground Truth Data to Semantic Conformance Testing of Fingeprint Minutia Encoding

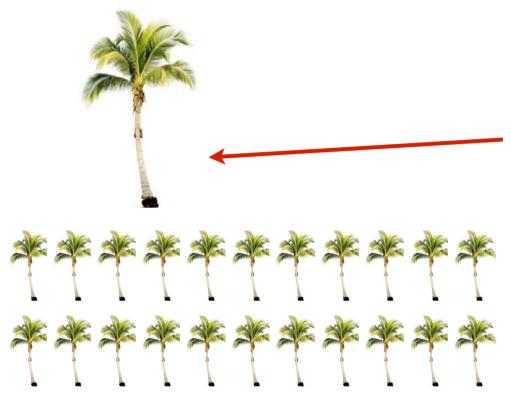
Christoph Busch

Fraunhofer IGD / Hochschule Darmstadt, Germany

joint work with:

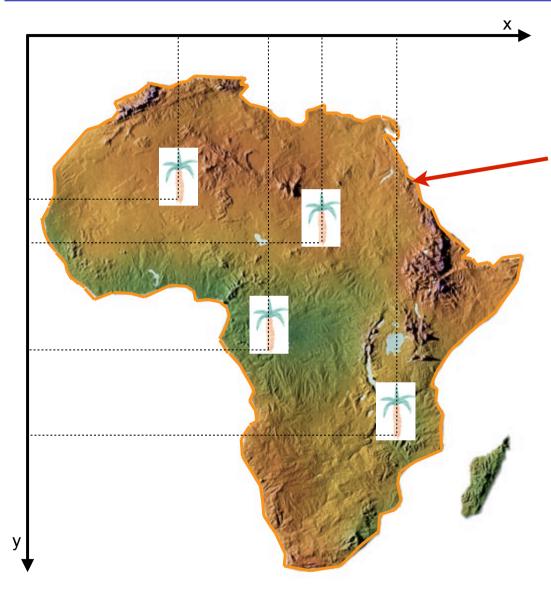
Dana Hejtmankova, Elham Tabassi, Patrick Grother Wolfgang Krodel, Lars Neumann, Timo Ruhland, Michal Dolezel, Ulrike Korte

 What is "Ground Truth Data" for Fingerprint Minutia Encoding?

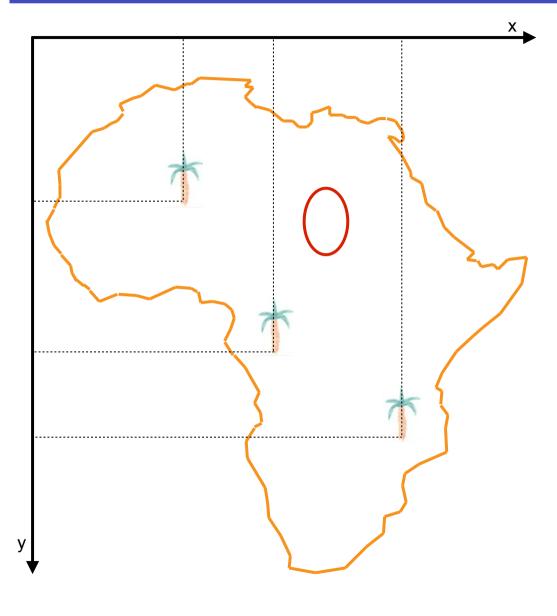

a winter prespective....

This is Africa and we can consider it as a biometric characteristic geographic characteristic. It is a continental part of our body globe.

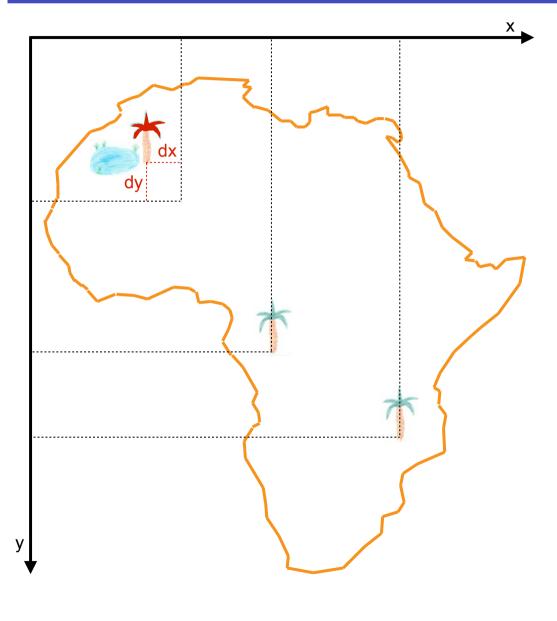
and
this is the Sahara,
which is
a significant part of Africa
as it is the world's largest
hot desert.



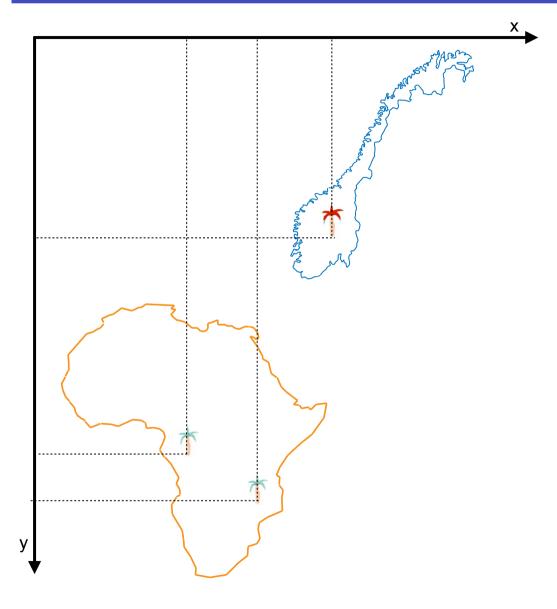
and
this is a palm tree
there are many palm trees
in the Sahara.


They serve as landmarks and we like to see them close to some water (oasis).

Christoph Busch


and this is a representation of the geographic characteristic that has been generated from the geographic sample. The representation contains features which encode the locations of the landmarks.

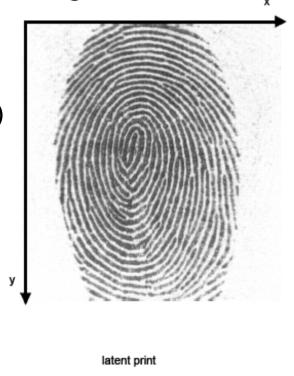
unfortunately


the Sahara is the source of sandstorms that causes regionally a bad visibilty. In consequence the feature extractor will not detect the poorly visible landmark

a second problem
is a fata morgana
that causes the
feature extractor to detect
the feature (with an oasis?)
at a dis-located position.
Thus the encoded feature
does not represent the landmark

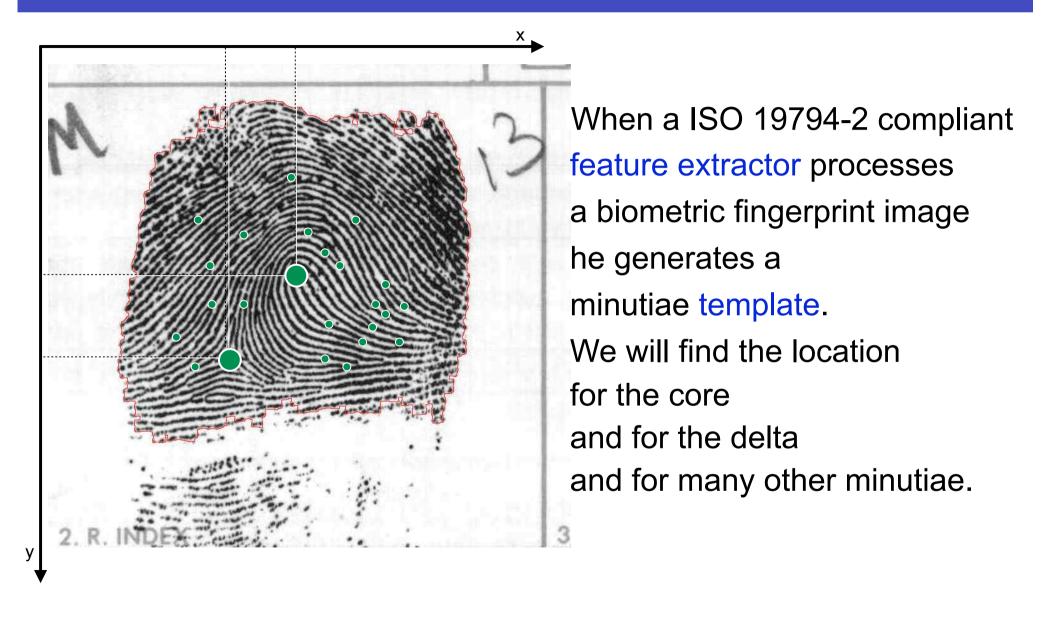
a third problem
could be the globalisation.

If the feature extractor seeks
for landmarks out of area
he may detect falsely a feature
at a position, where
you can find in reality rather
other biological entities (elks)

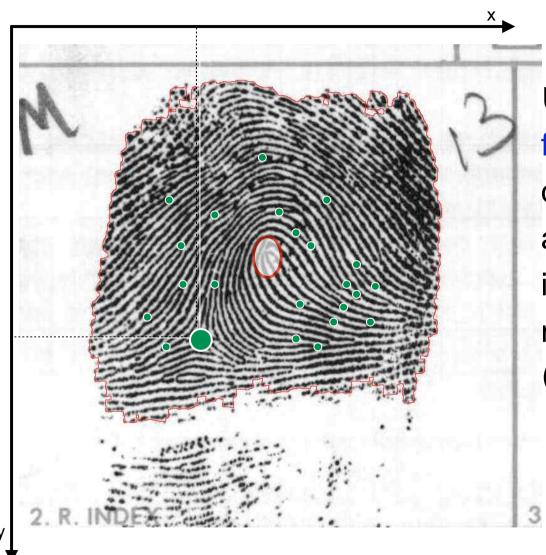


Properties of Finger Minutiae Detectors

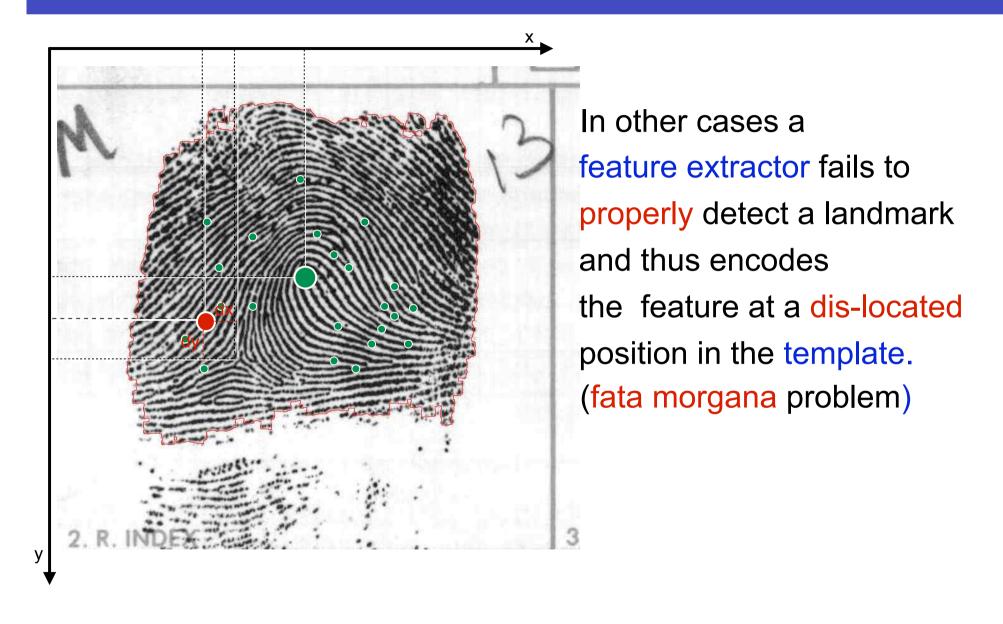
Representation in Minutia Format

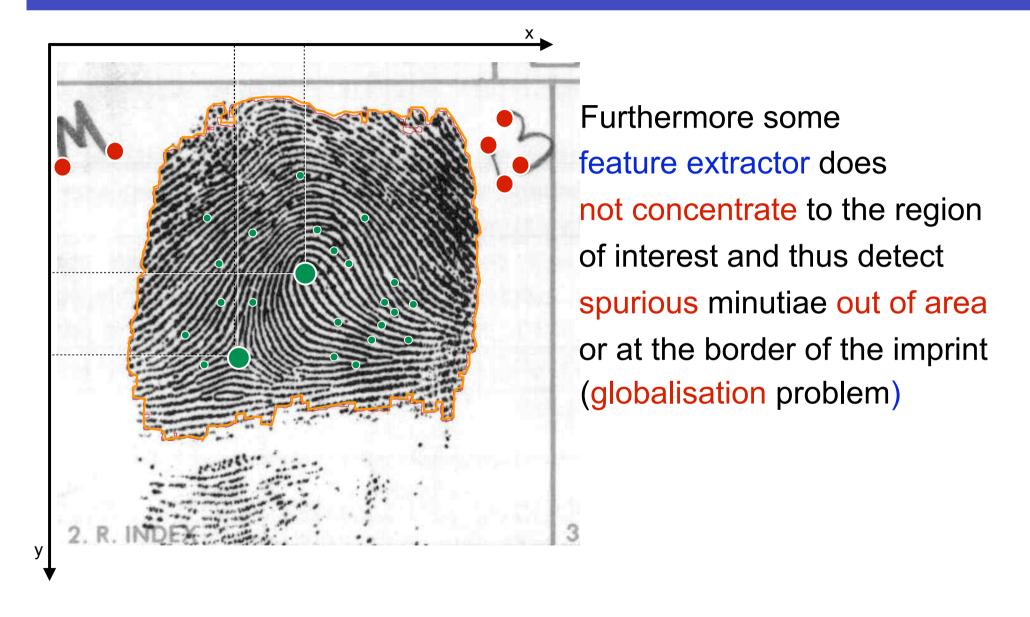

ISO/IEC 19794-2: Biometric data interchange formats - Part 2: Finger minutiae data

- Ridges and valleys, core and delta
- Ridge bifurcation and ridge endings
 - finger minutiae
- Encoded main features
 - Minutia point (coordinates x,y)
 - Minutia direction (angle θ)
 - Minutia type
- Other features are e.g.
 - quality



Encoding the Minutia Format


Deficiencies of the Minutia Encoder


Unfortunately sometimes a feature extractor does not detect a landmark and thus relevant information is missing in the minutiae template.

(sandstorm problem)

Deficiencies of the Minutia Encoder

Deficiencies of the Minutia Encoder

Conformance Testing Methodology of Finger Minutiae Detectors

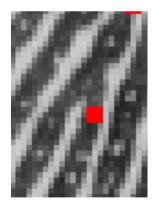
Conformance Testing

Conformance testing is defined in a dedicated standard, which is currently under development

- ISO/IEC IS 29109-1 Information technology Conformance testing methodology for biometric data interchange formats defined in ISO/IEC 19794 — Part 1: Generalized conformance testing methodology
- ▶ ISO/IEC FDIS 29109-2 Information technology Conformance testing methodology for biometric data interchange formats defined in ISO/IEC 19794 - Part 2: Finger minutiae data
- ▶ ISO/IEC 29109-1 formulates the relevant test type "A":
 - attesting that a unit is generating conformant biometric data interchange records.
 - in the case of fingerprint data this tests will verify that a unit (e.g. a minutia extraction algorithm) can create finger minutiae data records (templates) from appropriate fingerprint image data.

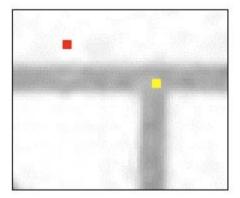
Level of Conformance Testing

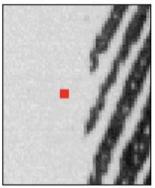
There are various level of conformance tests:

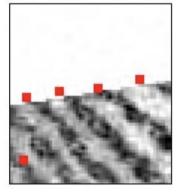

- Level 1 Basic Data Field Testing:
 - all data fields exist properly (e.g.in the correct encoding.)
- Level 2 Internal Consistency Testing:
 - all data fields are filled with meaningful values and the fields are internally consistent.
- Level 3 Semantic Testing:
 - a semantic test to verify that a generated biometric data interchange record is a faithful representation of the initial digital representation.

Semantic Conformance Testing

For fingerprint minutiae data


- template consists of automatically generated minutiae (agm)
 - agm's are encoded by an implementation under test (IUT)
- semantic test to be covered by ISO/IEC 29109-2 AMD1
- semantic conformance is assessed by three rates:
 - ▶ 1.) Test for the sandstorm and the fata morgana problem:
 - Is the for every ground truth minutia (gtm) in the vicinity an automatically generated minutia (agm) in the template?
 - 2.) Test for the out-of-area problem (false minutia):
 - How many automatically generated minutiae (agm) are placed outside or at the border of a fingerprint area?
 - ▶ 3.) Test for spurious minutiae in the fingerprint area:
 - How many automatically generated minutiae (agm) do not have a mate in the gtm-set

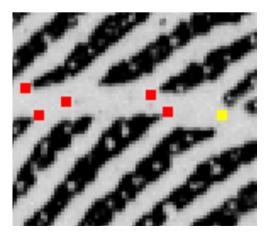

- Sandstorm and fata morgana gtm-test:
 - lacktriangle The gt-minutiae assertion test yields a first conformance rate cr_{gtm}
 - indicating the proportion of elements
 in the set of gt-minutiae for which a corresponding minutia exists
 in the set of automatically generated minutiae,
 - such that values can be compared for each data field and differences can be measured.
 - the assertion requires the corresponding minutia to be in the vicinity.

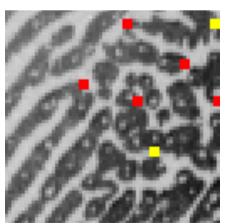


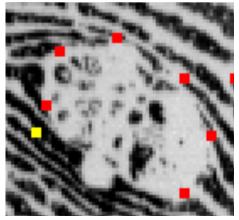
bifurcation detected dislocated as ridge ending

- Out-of-area agm-test assertion:
 - asses the number of outside false minutiae (false minutiae)
 - an out-of-area agm-minutiae assertion test is yielding a second conformance rate cr_{agm} that is indicating the proportion of elements in the set of agm that are inside or at the borderline of the fingerprint area.

- Out-of-area agm-test assertion:
 - ightharpoonup second conformance rate cr_{agm}


$$\operatorname{cr}_{agm} = \frac{\sum_{i=1}^{nagm} mps_i}{nagm}$$

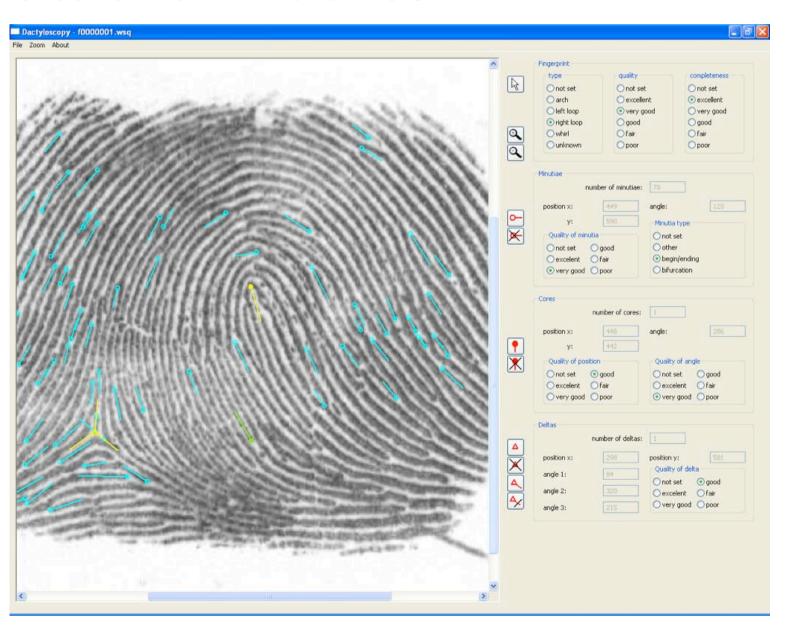

- where nagm is the number of elements in the agm set and mps_i is the minutia position score for the i-th ag-minutia that indicates the homogenious distribution of ag-minutia with respect to the fingerprint area.
- metric will reflect a "punishment" for those agm that are on the borderline or outside the fingerprint area according


- Spurious agm-test assertion:
 - The set of agm minutiae may contain spurious minutiae that are located in the fingerprint area
 - scars, bent skin, skin disease, dirt, etc.
 - **third** conformance rate cr_{amf}

$$\operatorname{cr}_{amf} = 1 - \frac{niagm}{nagm}$$

- where *niagm* is the number of focused *agm* inside the fingerprint area, which does not correspond to any *gtm*.

Composing
Ground Truth Fingerprint Minutiae Date


Semantic Conformance Testing

Challenge for implementing Semantic Testing:

- What is the "real minutia coordinate"?
- need for ground truth database (gtd) with minutiae data
 - need for public available fingerprint image data that is not restricted by privacy regulations
 - NIST special databases:
 SD14 rolled data and mostly ink with few live scanned images
 SD29 flat data /plain impression but all ink
 - need for dactyloscopic experts that define the truth!
 - Germany: Federal Criminal Police Office (BKA)
 - Australia: CrimeTrac
 - Czech Republic: Criminalistic institute Prague

Graphical User Interface

Ground Truth Minutia - GUI

Benefit of a Ground Truth Minutiae Database

Benefit of a Ground Truth Database

Database can serve for many purposes

- providing the ground for development of a semantic conformance test methodology
- providing the ground for semantic conformance tests according ISO 29109-2 AMD1
- providing the ground for development and calibration of fingerprint image sample quality metrics
 - NFIQ2-development and training
- providing the ground for dactyloscopic training software

Initial Test Results

Test Results

Results BIOSIG 2009

- 17 images, max 11 experts each
- average ngtm: 59
- average agm: 100 (for NIST mindtct)

conformance rates	cr _{gtm}	cr _{agm}	Cr _{amf}
average	0,353	0,885	0,662
std. deviation	0,179	0,066	0,178

Test Results

Results BioKeyS 2010

- 3 experts opinions each for 975 images (733 used)
 - ▶ SD14: 486 images / SD29: 247 images
- SD14 average *ngtm*: 76 (min 7 / max 174)
- SD14 average agm: 201 (min 87 / max 366) (NIST mindtct)

conformance rates	cr _{gtm}	cr _{agm}	cr _{amf}
average	0,464	0,857	0,645
std. deviation	0,092	0,063	0,123

 Generating this result was kindly supported by the German BSI under the BioKeyS-Pilot-DB project

Conclusion

- Conformance testing essential step in system selection
- Semantic conformance testing requires ground truth data
- Further datyloscopic experts groups welcome
- Testing methodology under development
 - fusion of conformance rates
 - thresholds for the conformance rate
- Further data segments addressed soon

Further Information

on Semantic Conformance Testing

- On March 5, at 11:30 a session on fingerprint feature markup and testing will be held.
 - This workshop will discuss work in this area, interoperability, reference datasets, and the possibilities for semantic conformance testing.

• Publications:

- C. Busch, D. Lodrova, E. Tabassi, W. Krodel: "Semantic Conformance Testing for Finger Minutiae Data", in Proceedings of the IEEE International Workshop on Security and Communication Networks (IWSCN), Trondheim, ISBN 978-82-997105-1-0, pages 17-23, (2009)
- D. Lodrova, C. Busch, E. Tabassi, W. Krodel, M. Drahansky: "Semantic Conformance Testing Methodology for Finger Minutiae Data", in Proceedings BIOSIG 2009, (2009)
- Website with information on the topic
 - http://www.igd.fraunhofer.de/~busch/gtd

Thank you for your attention and many thanks to the dactyoloscopic experts contributing to the ground truth database

Contact

Prof. Dr. Christoph Busch

Department Security Technology Fraunhoferstrasse 5
64283 Darmstadt, Germany
Phone: +49-6151-155-536
christoph.busch@igd.fraunhofer.de
www.igd.fraunhofer.de/~busch